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1. The temperatures of the early-type stars are not known 
very precisely inspite of a number of investigations to establish 
the upper end of the temperature scale. This state of affairs is a 
result partly of lhe complex and largely unknown relationships 
existing between lhe various types of temperature which may be 
defined, and partly of lhe observational difficulties. The methods 
of colour temperature are inconclusive for the high temperature 
stars because in the O and B stars most of the flux is emitted 
al inaccessible wavelengths in lhe far ultraviolet, hence measure­
ments can only be made on lhe tail of the energy distribution 
curve where lhe gradient is not very sensitive to temperalure, 
and because lhe spectral distribution of lhe photographic and 
visual light received from most 0 and B stars is modified by the 
interstellar malerial lying between these stars and us. The 
ionisation temperature scale introduced by Fowler and Milne (1) 
and used extensively by Miss Payne (2) and also by Panne- 
koek (3), has been the most useful temperature scale for the 
early-type stars, but for the earliest types it is somewhat un­
certain as it depends entirely upon the spectral type chosen 
typical of the He++ maximum. R. M. Petrie (4) has discussed 
critically the existing temperature scales for the early type stars 
and in particular criticises Kuiper’s (5) extrapolated ionisation 
temperature scale. Petrie has proposed a more compressed 
excitation temperature scale, but because his results are based 
on a single curve of growth for He I which is used for all the 
stars and because of lhe sensitivity to Stark effect of the lines 
of He I and He II which he uses, it is doubtful if the method 
he has used is very sensitive. In any case it is not clear that 
ionisation temperature, excitation temperature and effective
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temperature should be closely the same for the early type stars. 
Unsöld’s (6) investigations of the atmosphere of rSco, a BO V 
star, show the difficulties to be met in trying to establish from 
observations an exact ionisation or excitation temperature for 
the earlv-type stars, and clearly point to the intricate relation­
ship existing in a stellar atmosphere between the various temper­
atures which may be defined.

In view of the differing observational results that have been 
obtained, a theoretical determination of the effective temper­
ature of an early-type atmosphere would be valuable. The 
method of model atmospheres offers a powerful tool for deter­
mining effective temperature, for, once an acceptable model 
atmosphere has been obtained, the integrated net flux emerging 
from it may be calculated. By definition the integrated net flux 
determines the effective temperature of the atmosphere. This 
temperature will be the effective temperature of the spectral type 
corresponding to the model atmosphere. In this paper, methods 
for computing model atmospheres for the high temperature stars 
and for determining the spectra of these atmospheres will be 
developed and a model atmosphere will be computed. The 
spectral type of this model atmosphere will be determined by 
comparison with observations and the emergent flux will be 
calculated in detail so that the effective temperature of the model 
atmosphere may be found and a point determined at the upper 
end of the stellar temperature scale.

Recently the method of model atmospheres has been highly 
developed by Strömgren (7) and applied by Strömgren and 
his co-workers to studies of the solar atmosphere and of the 
atmospheres of stars of neighbouring spectral type, while Ri d- 
KJØBING (8) has applied these ideas to the study of the atmospheres 
of B-type stars. We shall proceed in a manner somewhat dif­
ferent in detail from that adopted by Rudkjobing, who uses the 
principle of the Rosseland mean absorption coefficient and 
divides the radiation field into two parts and then works with 
only the flux at frequencies greater than the Lyman limit to gel 
the structure of his atmosphere, for we shall work with the whole 
radiation field and we shall use the Chandrasekhar straight 
mean absorption coefficient (9) which is particularly advanta­
geous for dealing with the effects of radiation pressure on the 
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mechanical equilibrium of the atmosphere (10). With a view to 
the extension of the method of model atmospheres to atmospheres 
of very high effective temperature, we shall consider the effects 
of radiation pressure in more detail than has been the case in 
previous investigations. Like Rudkjobing we shall assume that 
the opacity in our model atmosphere is given by continuous 
absorption from hydrogen and helium, which are present in the 
ratio 85:15 by number, and by electron scattering. We shall go 
further than Rudkjobing in that we shall test our model atmo­
sphere for radiative equilibrium by computing the net flux without 
making any approximations at all. We shall also discuss in detail 
the question of the /’-values for the lines of L-S coupling multiplets, 
and will assemble the necessary formulae for computing these 
/’-values. The method, due to Strömgren, which we will use for 
computing the net flux in the atmosphere by solving the Schwarz­
schild integral equation, provides us with a non-approximate 
method of calculating the line spectrum of the model atmosphere. 
A by-product of these calculations is the limb-darkening of the 
model atmosphere in various wave-lengths.

Numerical methods, such as we will use, give a realistic 
picture of the stellar atmosphere, for they take account of the 
actual variation of the quantities in the atmosphere, and make 
no a priori assumptions about the behaviour of any of these 
quantities. The model atmosphere is idealised to the extent that 
it is assumed to be symmetrical with respect to the centre of the 
star so that the physical parameters vary with depth in the 
atmosphere only, and it is assumed that the chemical com­
position is constant throughout the atmosphere. Furthermore the 
atmosphere is assumed to be in a state of mechanical equilibrium. 
The dependence of temperature upon the pressure and the 
electron pressure throughout the atmosphere is then obtained by 
integrating the differential equation of mechanical equilibrium. 
The model atmosphere so obtained is said to represent a real 
stellar atmosphere in radiative equilibrium if it can be shown 
that an atmosphere with this structure produces a net flux which 
is constant with increasing optical depth. When a model atmo­
sphere satisfying the two conditions of mechanical equilibrium 
and constant net flux has been obtained, the line spectrum of 
the model atmosphere may be calculated and detailed information
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about the spectral type of the model atmosphere and the abund­
ance of the elements in the stars may be derived by comparing 
the computed spectrum with observed spectra.

2. We shall consider an atmosphere of high effective temper­
ature in which the opacity is a result of continuons absorption 
by hydrogen, neutral helium and ionised helium, and of electron 
scattering. We shall further assume that the star is a main- 
sequence star and that the transport of energy by turbulence is 
not important. The equation for mechanical equilibrium in such 
an atmosphere is

¿Og + Pr)
—dT =~9ÿ (1)

where pg is the gas pressure, pr is the radiation pressure, and q 
is the density at the level z in the atmosphere. The surface gravity 
of the star is g. In atmospheres of comparatively low effective 
temperature the radiation pressure is negligible in comparison to 
the gas pressure. However, in atmospheres of high effective 
temperature the radiation pressure is not negligible. In an atmo­
sphere in which the opacity is given by continuous absorption 
and by electron scattering it may be shown (10) that

where z>> is the monochromatic mass-absorption coefficient in 
the atmoshpere and cr is the mass-scattering coefficient assumed 
to be independent of wavelength. In such an atmosphere (11) 
the gray-body temperature law deduced by Chandrasekhar (9) 
remains a valid approximation if the optical depth is defined by

dr — — (z + <r) ø dz (3 )
where

zy = z ( 1 + dr), (4)

and if z is defined formally in the manner recommended by 
Chandrasekhar (9), that is if

(5)
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Here Fv is the monochromatic flux in a gray atmosphere in 
which the opacity is given by continuous absorption and by 
continuous scattering. In Chandrasekhar’s discussion the opacity 
in the atmosphere is given by absorption only. The quantity ôv 
is a small quantity giving the departure from grayness at any 
frequency. When we introduce equation (4) into equation (2) 
we find

dpr Ti <.°° n xg{ôvFvdv. (6) 
Jo

We can be reasonably sure that the second term on the right 
side of equation (6) is small since the definition of x (eq. [5]) 
is equivalent to putting

\ôvF(v1}dv = 0,
Jo

and we may expect that the actual monochromatic flux Fv, is of 
the same order of magnitude as the grav-body monochromatic 
flux, F^\ We shall neglect the second term and write

---(«+<r)e (Ddz c Jo

that is we shall use the radiation pressure gradient of a gray­
atmosphere. The definition of effective temperature gives

oc

n\Fvdv=aRT*  (8)
Jo

where crR is the radiation constant, 5-67 X 10~5 ergs/cm2/sec/ 
degree4. Hence we have

dpr
— = ^Cx + a)e--T¡. (9)

If we introduce this expression into equation (1) and change to 
the variable r, optical depth, we find that the equation for me­
chanical equilibrium including the effect of radiation pressure is

= U _°BTt 
dr x + a c ' (10)



8 Nr. 13

Wc shall determine the structure of our atmosphere by in­
tegrating this equation. The term (a7i/c) Te4 is a constant for any 
atmosphere. In atmospheres of low effective temperature this 
term, representing the effect of radiation pressure, is negligible. 
However, when Te is greater than 104 this term becomes important. 
This treatment, which is possible only if a straight mean ab­
sorption coefficient is used, becomes more accurate as the de­
partures from grayness, ôv, become small, and the value of the 
neglected term approaches zero. This method has the advantage 
that we use the true surface gravity of the star in integrating our 
atmosphere rather than an effective surface gravity which is not 
necessarily constant with depth. That peff is not necessarily 
constant with depth may be seen from its usual definition, (12)

We have no a priori reason for supposing the term <?-1 dpr/dz to 
be constant with depth, and indeed reference to equation (6) 
will show in general that this term is not constant with depth 
for X + <7 and x are not constant with depth. In cases where peff 
is very nearly the same as g, the possible variations in pc)T are 
of little account.

In order to integrate equation (10) and obtain the structure 
of the atmosphere we must know the dependence of x + o'on r. 
(We shall use the parameter t as the independent variable in 
the integration). First we need to know the relation between t 
and T, the temperature at any level in the atmosphere, for x 
depends on T. Analytical studies, (9), (11), have given relations 
between r and T which are valid in a gray atmosphere and 
which should be good approximations in a non-gray atmosphere. 
However, on integrating a model atmosphere it is immaterial 
exactly what r— T relation we use so long as we obtain an atmo­
sphere which is in mechanical equilibrium and which yields a 
constant net flux. As a first approximation we shall use the 
classical relation

r(r)4 = (12)
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where To is the boundary temperature. If the flux from our 
model is not constant with depth we shall modify this relation 
in a second approximation.

The opacity of our atmosphere is given by hydrogen, helium 
and by electron scattering. We assume hydrogen and helium to 
be present in the proportion <85:15 by number. We can neglect 
the small amounts of the other elements present, for these elements 
do not contribute appreciably to the opacity of the atmosphere. 
The mixture chosen is such that one gram of star material 
contains 0.585 grams of hydrogen and 0.415 grams of helium. 
If kv (//) is the monochromatic continuous absorption coef­
ficient of hydrogen per gram of neutral hydrogen, kv (He I) is 
the monochromatic continuous absorption coefficient of neutral 
helium per gram of neutral helium, and kv (He II) is the mono­
chromatic continuous absorption coefficient of ionised helium per 
gram of once-ionised helium, then the monochromatic continuous 
absorption coefficient per gram of star material is

xv = 0-585 (1 —xH) kv (H) + 0-415(l—xHeI—xHeII)kv(HeI)
(13) 

4- 0 -415 æj kv (He II).

Here xH is the degree of ionisation of hydrogen, xHel gives the 
fraction of singly ionised helium atoms, and xHeII gives the 
fraction of doubly ionised helium atoms. The absorption coef­
ficients kv (H), kv (He I), kv (He II) depend only on the temper­
ature, or optical depth, whereas the abundance factors, 0-585 
(1—xH), etc., depend on the temperature and the electron pres­
sure. These factors may be calculated from the ionisation 
equation. We have

5
log--------- = — 13-53 0 + » log T—0-477 —logpe, (14)

1 “ XH

log—= logA = — 24-46 0+ log T+0-125 —logpe, (15)
2''He0

and
■N He + + 3

log -—-----  = logB = — 54-14 0 + y log T—0-477—logpe, (16)
^He+
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where we have put 0 = 5040/7’. Since we define

XHeI ^He+I^He 

and
XHeII = He+ + I^ He

where NHe is the total number of helium atoms and ions present, 
it follows that

A 1
(17)J//eJ “ 1 +A(1 + B) '1+B

and
AB B (18)^Hell - t + 7i) • (1+B)-

The quantities A and B are found from equations (15) and (16). 
From equations (5) and (13) it follows that

% = 0-585(1 — xH) k(H) + 0-415 (l—xIIeI — xHeII) k(Hel)

where
+ 0-415 xHe ! k(He II),

00 pd)
Á(H) = \kv(H)~ dr,

Jo x
x> /?d)

k(HeI) = \kv{HeI)^dv,
Jo x

/?d) 
k(Hell) = {kv(HeII) V dr.

Jo x

(19)

(20)

The coefficient of scattering per gram of star material is 
a = ae X number of electrons per gram of star material where <je 
is the scattering coefficient per electron, 8 7re4/3 in2 ci. We find 
that 

CT °e
0-585 •r7¿ + 0-415, t

Vl+ I + xHe II) 
mHe

where mIl is the mass of the hydrogen atom and mHe = 4 mH is 
the mass of the helium atom. When the numerical factors are 
introduced we obtain

c = 0-397 [0-585 xH + 0-104 (xHc 7 + 2 xHeI1)]. (21)
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The coefficient of scattering per gram of star material depends 
on the electron pressure and the temperature at any level in the 
atmosphere. The maximum value crean reach, (.rH = 1, xHel = 0, 
xHe 11 — 1)’ is 0-315 with the mixture of H and He used.

The monochromatic absorption coefficients for hydrogen and 
for ionised helium corrected for stimulated emission .can readily 
be found from Kramers law. The development of these formula 
is discussed for instance by Unsold [(12), p. 117 if.]. We have

where

and

F(H) =
64 n4 me10 e ll^H^
3|/3 c7i3mH(Å-T)3

(22)

Here we have extended Unsöld’s treatment by continuing the 
summation over all continua up to that from the level n = 9, 
and then have performed an integration. The abréviation 
u = hv/kT is used. The quantity un (//) is the value of u at the 
series limit n,

1 RHIlC
7? kf

where RH is the Rydberg constant for hydrogen. Values of 
FÎH^DÇIV) for hydrogen al a number of temperatures are given 
in Table 1. From this information kv (H) may be readily cal­
culated by equation (22) for any temperature and at any wave­
length desired.

Since the ionised helium atom is hydrogen-like, we may 
find the continuous absorption coefficient of ionised helium cor­
rected for stimulated emission in the same way. We have

i in F (He II) D (He IDkv(HeII) =----------- —a----------- (1— e ), (23)

where
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and

F (He II) = e w niÉLA2*> e~U1 
3J/3 ch3 mHe (kT)3

I)(H) =
ei>„ (He II) eii10(HelI)

‘lu1 (He II) ’

The quantity un (He II) is
4 he 

u„(He!I) = ^RHe^j.

where IiIlc is the Rydberg constant lor helium. Values of F (He II) 
I) (He II) at a number of temperatures are given in Table 2.

Table 1.

F(H) ■ I)(H) per gram of neutral hydrogen.

* vacuum wavelengths.

T 0 <2. <911.6A* 911.6 <A <3646 A* 3646 <2. <8204A* 8204 <2. < 14,590A*

25,200° 1.17x10® 1.81X10« 4.65 X10s 2.99 x10s
28,000 8.49 X 108 2.16 6.20 x10s 4.12 x10s
30,000 6.96 X 108 2.37 7.50 X 10s 5.14x10s
32,000 5.73 x10s 2.62 8.69 x10s 6.08 x10s
34,000 4.80 X 108 2.81 9.90 X 10s 7.07 X 10s
38,000 3.42 X 108 3.06 1.19 X 10« 8.74 x10s
42,000 2.54 X 108 3.22 1.36 X 10« 1.04x10«
46,000 1.96X108 3.48 1.61 X10« 1.27 x 10«
50,000 1.52 X 10s 3.34 1.64 X10« 1.33x10«
54,000 1.22 x10s 3.42 1.69 X10« 1.37x10«
58,000 9.90 X 107 3.28 1.73 X10« 1.43x10«
62,000 8.15 X 107 3.21 1.76 X 10« 1.46 X10«
70,000 5.74 X107 3.08 1.81 X10« 1.54 X10«
80,000° 3.92 X 107 2.76 X 10® 1.73 X10« 1.49x10«

We neglect the Gaunt factors in calculating kv, for reference 
to a review of the question of the values of the Gaunt factors by 
Chandrasekhar (13) shows that the Gaunt factors are close to 
unity except near the scries limit and in the region v->oc. In 
the latter region g (v, n) 0, but this fact is of little importance 
lor the contribution of kp to k at the very highest frequencies is
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Table 2.

F(He II)-D(He II) per gram of ionised helium.

T 0 <2 <228A 228 <2 <912A 912 <2 <2052A 2052 <2 <3646A

25,200° 4.74 X109 4.05 4.47 X IO-2 8.57 X 10-3
28,000 3.40 X109 19.2 0.312 6.93 X IO-2
30,000 2.76 X 109 48.7 1.18 2.41 X 10-1
32,000 2.28 X 109 1.08 X 102 2.70 7.15 X 10-1
34,000 1.90 X 10° 2.17 X 102 6.54 1.86
38,000 1.36 X 109 6.75 X 102 27.9 8.95
42,000 9.95 x10s 1.65 X 103 88.2 31.4
46,000 7.68 X 10® 3.46 X 103 2.29 X 102 88.8
50,000 6.93 X 10® 7.64 X 103 6.22X102 2.60 xlO2
54,000 4.73X10« 1.01 X 104 9.50 X 102 4.18 X 102
58,000 3.05x10® 1.21 X104 1.31 X 103 6.09 X IO2
62,000 3.14 X 10® 2.13 X 104 2.62 xlO3 1.28 X 103
70,000 2.18x10® 3.67 X104 5.59 X 103 2.95 XlO3
80,000° 1.45 X 10® 1.03X105 5.43 X 104 6.40 X 103

T 3646 <2 <5698 A 5698 <2 <8204 A 8204 <2 < 11,170 A 11,170 <2 <14,590A

25,200° 4.02 X 10-3 2.70 X 10-3 2.14 xlO-3 1.85 XlO-3
28,000 3.51 X 10-2 2.45X10-2 1.98X10-2 1.74 X IO-2
30,000 1.27 x 10-1 9.11 X 10-2 7.49X10-2 6.61 X IO-2
32,000 3.93 X 10-1 2.87 X10-1 2.39 xlO-1 2.13 X 10-1
34,000 1.05 7.84 X 10-1 6.59 X 10-1 5.90 X 10-1
38,000 5.39 4.13 3.54 3.21
42,000 19.8 15.6 13.5 12.4
46,000 58.3 46.8 41.1 37.8
50,000 1.77 X102 1.45 X 102 1.29X102 1.19X102
54,000 2.93 X 102 2.42 X 102 2.19X1O2 2.03 XlO2
58,000 4.34 X102 3.67X102 3.33X102 3.10X102
62,000 9.36 X102 7.96 X102 7.25 X 102 6.79 xlO2
70,000 2.24 x10s 1.96 X103 1.80 X 103 1.70 XlO3
80,000° 5.00X103 4.41 X 103 4.09 xlO3 3.87 X 103

negligible, because here the weight function approaches zero. 
The most serious effect of our neglect of the Gaunt factors is 
that we have made the continuous absorption coefficient of 
hydrogen too large just to the violet of the Lyman limit and of 
the Balmer limit. In practice, however, at the red side of these 
limits an additional source of pseudo continuous absorption 
appears owing to the overlap of the wide-spread wings of the 
higher members of the Lyman and Balmer series. This apparent 
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continuous absorption is nol included in the calculation of the 
mean continuous absorption coefficient, and its effect on the 
mean absorption coefficient may be allowed for by neglecting 
the Gaunt factor. When it is a question of calculating the mono­
chromatic continuous absorption coefficient at any wavelength 
and working with this, we should closely consider the effect of 
Gaunt factor and the overlap of the wings of the lines. We neglect 
both these factors in the ensuing computations, consequently the 
discontinuity we calculate in the continuous absorption coef­
ficient at the Lyman and Balmer limits will be larger in our 
model atmosphere than it would be in an actual stellar atmo­
sphere of the same structure. This is because we calculate kv loo 
large on the violet side of the limit and too small on the red side. 
The effects of these approximations on the continuous absorption 
coefficient of ionised helium are not important for ionised helium 
is not a major contributor to the opacity of our stellar atmosphere.

To obtain kp (He 7), the monochromatic absorption coefficient 
for neutral helium per gram of neutral helium corrected for 
stimulated emission, we must sum the contributions from each 
of the continua of neutral helium. Atomic absorption coefficients 
for the continua from the ground level of neutral helium, PS, 
and from the excited states 21S, 235, 21P and 23P, have been 
published. However, no value of the atomic absorption coefficient 
for levels with n > 3 are available. In order to evaluate the

The continua of the He I atom.

Table 3.

Level E. P. /limit source for a

ILS’ 0.00 V 504 A 1
2LS 19.73 2601 ; S. Huang, Ap. J. 10S, 354, 1948.
2LS' 20.53 3112 1
2 3 P 20.87 3436 L. Goldberg, Ap. J. 90, 414, 1939, for the
21 P 21.13 3682 P-D continua and approximate formulae, 

privately communicated, for the P-S 
continua.

n = 3 22.88 7710 1
h = 4 23.60 14,020 ' hydrogen-like formulae.
¡i = 5 23.92 V 22,030 A 1
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contribution to the monochromatic absorption coefficient from 
the continua arising from these levels and from the free-free 
transitions we assume the helium atom is hydrogen-like, and that 
Kramer’s law can be used. Information about the position of the 
various series limits and the sources we shall use for av, the 
atomic absorption coefficient, is given in Table 3. Mean ex­
citation potentials are given for the levels with n = 3, 4 and 5.

The contribution to kv (He I) from any one continuum is 
av X number of atoms in the appropriate level. We assume the 
excitation is according to Boltzman’s law, hence

where nn s is the number of atoms in the rth stale of ionisation 
excited to the state s which has an excitation energy /rs. As 
usual nr is the total number of atoms in the rth stage of ionisation, 
grs is the statistical weight of the level s, and ur is the partition 
function. We wish to find kv (He I) per gram of neutral helium, 
hence nr — l/mHe, where mHe is the mass of the helium atom. 
At any temperature T, the contribution from level .$• to kv (He I), 
corrected for stimulated emission, is 

™He
(24)

since the partition function for neutral helium is unity. Here 
av (s) is the atomic absorption coefficient at frequency v in the 
continuum arising from level s. The atomic absorption coef­
ficient, av, for the continua from the PS, 2XS and 23S levels 
can be found from tables given by Huang (14). We shall use 
a mean of the values given by Huang for the dipole moment 
and the momentum interaction. The atomic absorption coef­
ficient for the continua occurring at the limits of the 21P— iPD 
and 23P— n31) series can be read from a graph given by Gold­
berg (15), or computed from the formulae he gives. Dr. Gold­
berg has privately communicated to me the following approx­
imate formulae for the atomic absorption coefficients in the 
continua arising at the heads of the 21P — n1S and 23P— n3S 
series. In the continuum at the head of the 21 P — rPS series,
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2 R me

and in the continuum at the head of the 23P n3S series

-15-80 4-3 -3-3 r

Here R is the Rydberg constant in frequency units, vn- is the 
frequency of the scries limit, and v is the frequency at which 
we wish lo lind the atomic absorption coefficient. When the 
numerical factors are introduced we have at the head of the 
2XP— iPS series

log av = 35-48 — 3-6 log r (25)

and al the head of the 23P— n3S series

log <ip = 31-06 — 3-3 log r. (26)

To find the contributions to kv (He I) from levels with n > 3 
and from the free-free transitions we must consider the helium 
atom Io be hydrogen-like. According to Kramers law the ab­
sorption coefficient per neutral atom at frequency v for a bound- 
free transition is

for a hydrogen-like atom of effective nuclear charge ZcfT. The 
summation is carried out over all continua with limits Io the 
red of the frequency being considered. As in the discussion for 
hydrogen and ionised helium, un is the quantity hvn/kT, where 
vn is the frequency of the scries limit n. The absorption coef- 
cient per neutral helium atom al frequency v due to free-free 
transitions is

64 7i4e10/n 2 e 1,1 1
i j/s cie v1 (28)

since although for free-free transitions Ze(T = 1 as in hydrogen, 
the ratio of the partition functions is 2/1 instead of 1/2 as for 
hydrogen. Upon combining equations (27) and (28) and in-
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tegrating the terms of the sum in equation (27) for values of n > 5 
(cf. Unsold [12] p. 118), we obtain for the absorption coefficient 
per atom of neutral helium

u/Hc/,n>3) =

64 7T4 e10 m e Ul Z4 < \ (eUi — 1 ) 2
3 |/3 ch6 r3 ■ n3 ' 2 uL «1

3<n

(29)

The absorption coefficient per gram of neutral helium corrected 
for stimulated emission is

kv(HeI,n>3) = — av(HeI,n>3) (1 -e~hv,kT). (30)

The total absorption coefficient at any frequency v of neutral 
helium per gram of neutral helium corrected for stimulated 
emission is the sum of the contributions from the individual 
continua with n <2 (eq. [24]), and the contribution from the 
levels with n > 3, and from the free-free transitions (eq. [30]).

We must now determine Zcff for the levels n > 3 of He I. 
For a hydrogen-like level

(31)

where R is the Rydberg constant, 1-097 X 105 cm“1, and zn is 
the wavelength of the series limit n. We have given zn in Table 3 
for the levels n — 3, 4 and 5. From equation (31) we find for 
n = 3, 4 and 5, Zefí = 1-032, 1-019 and 1-017 respectively. The 
mean value of Zefr is 1.023. Since only the levels with n — 3, 
4 and 5 contribute appreciably to the continuous absorption in 
the wavelength region in which we are interested, we use the 
Zeff which gives a mean representation of the energies of these 
levels.

We have now shown how to obtain kv (H), kv (He I) and 
kv (He II) at any temperature corrected for stimulated emission. 
In this connection it may be remarked that, as Rudkjøbing has 
shown (8), the coefficient of electron scattering should not be 

I). Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXV, 13. 2
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multiplied by the factor (1 —e~hvikT') With this information we can 
readily find k (H), k (He I) and k (He II) as functions of the 
temperature and hence of the optical depth, for the weight 
functions are tabulated, (9) or (11), as functions of the optical 
depth.

To obtain the structure of the atmosphere we must integrate 
the equation of mechanical equilibrium, equation (10), step by 
step. Since from equations (12), (19), (20) and (21) we can 
obtain x + o as a function of the election pressure and the optical 
depth, it is convenient to express p in term of pe and work 
with T as the independent variable and pe as the dependent 
variable. We have

Pg  ( 1 + æli) + NHe ( 1 + XHe ; + 2 XHe n)
Pe Nh XH + NIIe (xHe ! + 2 XHe n)

or inserting numerical values

Pg  0-585(1 +.rH) + 0-104(1 + xHeI + xHeII)
Pe 0-585 .rH + 0-104(.r/w + 2 xHelI)

However, for the values of T and pe of interest in the outer 
part of the atmosphere pg/pe is very close to 2. Hence we ex­
plicitly assume pg = 2 pe, and find the structure of our atmo­
sphere by integrating numerically the equation

(iPe _ 1 9
dr ~ 2 [x + (T c e (33)

The presence of the term (oR/c) T? in equation (33) shows 
that dpe/dx may become quite small. Consequently dpg¡dx will 
become small. If such is the case, convection will set in, for K. 
Schwarzschild has shown that if the existing temperature and 
pressure gradients are such in an atmosphere that

d log 7’ > (dlog T\
dlog7)ff Wlogpjad

convection will occur. The existing gradient at any level in the 
atmosphere may be found from
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r/logT _ pg ídpg 
d\ogpg T \dr,

dT 
dr ’ (34)

and the adiabatic gradient from

( \ 4 (B + l)pr/pff 4-1^1 + B (5/2 +
Wlogpjad- 4 (A + 4) prlp0 + [5/2 + A (5/2 + xJkT)]

which gives the adiabatic gradient for a mixture of radiation 
and an ionisable gas, one component of which is being ionised, 
in thermodynamic equilibrium at temperature T, (10). Here we 
have

where a is the Stefan-Boltzman constant, 7-55 X10-15 ergs/cm3/ 
degree4. In equation (35) %15is lhe ionisation energy of the element 
being ionised, 

and 
A = B(5/2 + Z1/Å-7'),

where v-¡ is the relative abundance by number of the element 
being ionised, is lhe degree of ionisation of this element, and 
x is the mean degree of ionisation,

I- =

A comparison of lhe results from equations (34) and (35) will 
show al what depths convection sets in.

In the convective zone the actual temperature gradient will 
be greater than the adiabatic gradient and less than the radiative 
gradient, and its exact value will depend upon the relative 
importance of radiative transport of energy to convective transport. 
We shall see that in our model lhe adiabatic gradient is very 
much the same as the radiative gradient, hence in lhe con­
vective zone we shall lind the structure of our model, that is 
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the dependence of temperature on pressure, by integrating 
equation (35). In doing this we do not assume p — 2 pe, but 
use the exact relation

PglPe = (1 + ^)/-r-

The use of equation (35) implies that the radiation field at any 
level in the atmosphere is that lor an enclosed volume in thermo­
dynamic equilibrium at temperature T. Since the convective zone 
is al some depth in the atmosphere, this approximation is valid. 
We continue to assume the existence of a state of local thermo­
dynamic equilibrium for the calculation of the ionisation in the 
atmosphere al any level, as we have done throughout the atmo­
sphere.

3. The numerical results of the integration of a model atmo­
sphere are given in this section. We start from the boundary 
conditions that 7’() = 25,200° and pe = 0, and integrate equation 
(33) inwards step by step. In the region 0 < t < 0-10 we use steps 
of Zlr = 0-01, in the region 0.10 <t< 1.0 we use At = 0-10, 
and from 1.0 < t < 3-0 we use At = 0-20. In order to find

At

at any level r we must know pe and 7’ al the level r. The value 
of T can be found from equation (12) and the value of pc is 
found by. trial so that

2 += I>er~Pe,_4r

where A pe is the increment in pe calculated at the level t — At , 
A pe is the increment in pe calculated with the assumed pe al 
level T, and pe is the value of the electron pressure al the 
level t — At. We take log g — 4-200 and we use the value Te = 
30,000° which is consistent with the use of the temperature law 
given in equation (12) and our boundary temperature of 25,200°. 
The quantities k(H), k (He I) and k (He II) (cf. eq. [19] and 
[20]) were computed at the levels t = 0-0, 0-20, 0-50, 1-00, 1-40. 



Nr. 13 21

2.00 and graphical interpolation was used to gel the À’s at other 
optical depths. We used the weight functions tabulated by Chan­
drasekhar (9) to form the I’s although strictly speaking this 
procedure is not quite correct (cf. [11]). We fell justified in doing 
this because preliminary computations showed that the quantity 
Z = x/(k -f- <t) would be close to unity, and under these cir­
cumstances the weight functions tabulated by Chandrasekhar 
are preferable to (hose which allow for the effect of electron 
scattering (11), but make a rather restrictive assumption about 
the dependence of the Plank function on optical depth. The 
graphs of the k’s were extrapolated linearly to t = 3-0, and the 
model was integrated to this depth step by step. The model 
atmosphere found is given in Table 4. Log is tabulated rather 
than log pe. It will be recalled that we have assumed p — 2 pe 
in this region, and that 0 = 5040/7’.

Table 4.

A model atmosphere with T() = 25,200°, log r/ = 4-200: 
Radiative zone.

T 0 log pg X o T 0 log Pg X a

0.00 0.200 2.121 0.802 0.274 0.60 0.170 3.301 3.418 0.275
.01 .199 2.377 1.396 .274 0.70 .167 3.357 3.447 .276
.02 .199 2.489 1.798 .274 0.80 .164 3.407 3.447 .276
.03 .198 2.563 2.033 .274 0.90 .162 3.450 3.526 .277
.04 .197 2.619 2.217 .274 1.00 .159 3.490 3.417 .278
.05 .197 2.665 2.467 .274 1.20 .154 3.549 3.167 .280
.06 .196 2.702 2.568 .274 1.40 .150 3.619 3.136 .282
.07 .195 2.736 2.671 .274 1.60 .147 3.679 3.230 .284
.08 .194 2.765 2.730 .274 1.80 .144 3.731 3.220 .287
.09 .194 2.791 2.896 .274 2.00 .141 3.777 3.168 .290
.10 .193 2.814 2.916 .274 2.20 .139 3.818 3.224 .292
.20 .187 2.926 2.922 .274 2.40 .137 3.856 3.241 .294
.30 .182 3.066 3.253 .274 2.60 .134 3.892 3.070 .297
.40 .178 3.162 3.428 .275 2.80 .132 3.926 3.041 .299

0.50 0.174 3.237 3.467 0.275 3.00 0.131 3.958 3.142 0.300

We must now lest this model for stability against convection 
by computing the radiative gradient (d log T/d logp„)rad from 
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equation (34) and comparing it with the adiabatic gradient 
(d log T/d logpff)ad at the same temperature and pressure cal­
culated according to equation (35). The residís of these cal­
culations are given in Table 5. We see that the atmosphere be­
comes convectively unstable at about r — 2-00 or 0 — 0-141. 
Since the difference between the radiative gradient and the 
adiabatic gradient is not large, we do not expect any large scale 
disturbances to occur as a result of the setting in of convection 
al these levels.

The temperature—pressure gradients in the radiative zone.

Table 5.

T
/dlogT\
(dlogpjrad

/d logZ\
(d log p Jad T

/diogr\
\dl°gpjrad

/dlog T\
(dlogpja(1

1.00 0.168 0.230 2.40 0.197 0.188
1.40 0.161 0.200 3.00 0.201 0.197
2.00 0.183 0.188

In order to obtain the structure of the atmosphere al greater 
depths, higher temperatures, we assume an adiabatic temper­
ature gradient and proceed by integrating equation (35). We 
assume the ionisation of hydrogen and the first ionisation helium 
to be complete, and we compute ay, the second degree of ionisation 
of helium, from the equation.

5
— 54-14 0 + — log T

2 ° 0-477 — log pe.

We note that in
ionisation is

this approximation the mean degree of

x‘ = 1 -00 + 0-15 ay

since the abundance by number of helium is 0-15. The resulting 
model atmosphere is given in Table 6. Here the assumption 
Pg = 2 pe is not made, and the quantity x is not defined.

The model atmosphere given in Tables 4 and 6 may be 
compared with the model atmosphere with 0o = 0-20 and log 
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Table 6.

A model atmosphere with Tg — 25,200°, logg' = 4-200: 
Convective zone.

0 !°g Py log Pe ff 0 !°g Py 10gpe <7

0.131 3.958 3.657 0.300 0.0947 4.558 4.286 0.315
.125 4.058 3.780 .305 .0886 4.658 4.386 .315
.119 4.158 3.882 .309 .0830 4.758 4.486 .315
.113 4.258 3.984 .312 .0779 4.858 4.586 .315
.107 4.358 4.085 .313 .0730 4.958 4.686 .315

0.101 4.458 4.186 0.314 .0685 5.058 4.786 .315
0.0642 5.158 4.986 0.315

.7en = 4-20 computed by Rudkjøbing (8). Rudkjøbing computes 
the structure of his model using an effective acceleration of 
gravity, and goes on to estimate that the true acceleration of 
gravity of his model is 104 . In computing our model we have 
assumed that the actual acceleration of gravity is 104’20, however, 
a rough comparison of our models may be made. In the outer­
most regions of both atmospheres the run of gas pressure with 
temperature is about the same, but the gas pressure begins to 
increase more rapidly with increasing temperature in Rudkjo- 
bing’s model than in ours and at moderate depths, 0 ~ 0-17, 
the gas pressure in Rudkjobing’s model is about 16 percent 
larger than in the present model. Rudkjøbing finds that con­
vection starts at about the same level, 0 0-141, as in the present
model atmosphere.

In assessing the behaviour of our model atmosphere it is of 
interest to find the run with depth of log gett, obtained from 
equations (9) and (11), the quantity z = %/(x + c), the ratio 
Pg/Pe computed according to equation (32), and the ratio pr/pg. 
We obtain the radiation pressure at any depth r by integrating 
the equation, (cf. eq. [9]),

dr c e

under the boundary condition that pr is zero at r = 0. An 
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Table 7.

Values of ceriain quantities in the model atmosphere: 
Radiative zone.

T ’°g ffefT Z p iprg' r e P 'P1 r> ‘g z(/7) X (He I) x(77e77)

0.00 4.152 0.745 1.998 0.000 0.433 0.386 0.001
0.05 4.068 .900 2.000 .166 1.377 1.087 .003
0.10 4.041 .914 2.000 .235 1.690 1.222 .004
0.40 4.009 .926 1.997 .422 2.183 1.228 .017
0.80 4.009 .926 1.991 .480 2.302 1.088 .057
1.20 i 4.025 .919 1.979 .519 2.144 0.893 .130
1.60 4.017 .919 1.964 .513 2.151 0.808 .271
2.00 4.025 .916 1.945 .512 2.156 0.625 .387
3.00 4.025 0.913 1.913 0.506 2.287 0.373 0.482

abridged table of these quantities is given in Table 7. Also given 
in Table 7 are z (//), H(Hel), x (He II) the contributions of 
hydrogen, neutral helium, and ionised helium respectively to the 
mean absorption coefficient, z.

In the convective zone the ratios p(J¡pe and pr¡pg can be 
found directly from their definitions. The value of the effective 
acceleration of gravity is found from the following considerations. 
We postulate that the model atmosphere must still be in mechanical 
equilibrium in the convective zone. Consequently we require

in addition Io the condition that d log Tjd log p is adiabatic, 
equation (35). Since in the convective zone we assume that the 
radiation field is that for an enclosed volume in thermodynamic 
equilibrium at temperature T we have

However
dr J/dlog7’\ dp(J

Pg\dk>gPg)ad dz ’
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hence we find
dpr 4 rzT4 / <7 log 7’\ 
de 3 pg \d\ogpg¡.MX dz '

Remembering that

and introducing equation (37) into equation (36), we obtain.

dz = —90-

lt follows that

(Jen = 9
dlo^T\
(l logpjad

(38)

(39)

The values for log gen given in Table 8 were found from 
equation (39).

From Tables 7 and 8 we see that the effective acceleration 
of gravity varies with depth in the atmosphere and that the 
radiation pressure is an appreciable fraction of the gas pressure 
except in the outermost layers of the stellar atmosphere. Conse­
quently radiation pressure and its effects can not be neglected 
in an atmosphere such as this. In most of the radiative zone the

Table 8.

Values of certain quantities in the model atmosphere: 
Convective zone.

0 l°g ffefT p9/pe Pr/Pg 0 P ¡P

0.131 4.025 1.91 0.506 0.0947 3.989 1.87 0.552
.125 4.024 1.90 .580 .0886 3.982 1.87 .580
.119 4.016 1.89 .558 .0830 3.978 1.87 .595
.113 4.009 1.88 .542 .0779 3.973 1.87 .601
.107 4.002 1.88 .542 .0730 3.968 1.87 .630

0.101 3.990 1.87 0.548 .0685 3.964 1.87 .648
0.0642 3.959 1.87 0.665
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ratio PglPe is close to the assumed value of 2-0, but near the 
beginning of the convective zone this ratio decreases. This is 
because at the temperatures and pressures of these layers the 
second ionisation of helium is becoming important. In the 
radiative zone lhe quantity 2 is sufficiently close to unity to 
justify the use of Chandrasekhar’s weight functions for forming 
x, cf. (11). We see that at all depths hydrogen is the main con­
tributor to the opacity. Neutral helium is an important contributor 
in lhe outer regions but at greater depths the second ionisation 
of helium sets in and then neutral helium decreases in importance 
as a source of opacity while ionised helium increases in im­
portance. In the convective zone we have assumed that lhe 
ionisation of hydrogen and the first ionisation of helium are 
complete. At the level r = 3-0 we have 1 — xH = 2-77 X 10~6 
and ArHe + /= 5-36 X 104, hence these assumptions are 
justified.

4. We have constructed a model atmosphere in mechanical 
equilibrium and we must now compute the net flux at various 
levels and sec if this flux is constant with depth. If this is so 
we may say that our model atmosphere represents a real stellar 
atmosphere. The following method of computing the net flux al 
any level in lhe atmosphere has been developed by Strömgren 
(16). The monochromatic equation of transfer for a stellar atmo­
sphere in which the opacity is given by continuous absorption 
and by electron scattering is

(//r
cos #—Sy GO)

dtv

where tv is lhe monochromatic optical depth

= — ( (x„ + a) q dz, (41)

and Sv is the source function,

Sr = ÀPBP + (1-ÂP)JP, (42)
where

2r — + a )
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1 ,7rand Jv — — \ Iv sin .
¿ *’ü

Wc have

1 f*  1
/,(/,) = ö \s„(í;)a’,(í'„-u<//;+., vs;(/;)a; (43)

- -'t,. ¿ * l>

where Å\ is the first exponential integral. If we introduce equation 
(42) into equation (43) and also define the quantity

(44)

we obtain the following functional equation for yp(iv),

Yv (tv) = - /^ (/,) + | ( Bv (fr) Kt (I t'v - I) dt'v
¿ *o

1 i,0°+ 9 \ f1 — A’(^)] Yv(tv)Ki (I t'v — tv |) dt'v 
-1 Jo

(45)

We now define

and lind Yv (tp) by an iterative process which gives

1 r ( / r) — W ( /y) + d 1 Yv -f" d2 } r -f- • • •

where

*Ï(U = (4G)

11 r”= I 5 - W)] MW, (I t’„-t,.\)dt;.,
- Jo

410; = ~ ([i -VQ]
• O

and in general

¿"i; = H[i-ÂAfr)]A"-tYv(i;.)Kl(\i'„~tr\)di;.
~ *0

(47)
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If the zl" i; very nearly form a series of constant ratio (1 —2r), 
we can write

1 v (b) — 1 v (h’) + -I2 1 p + Zp zl2 1 p (4(J)

as an approximation. This approximation is quite good when 
is not very small. When Àp is small it is better to extend the 

series to at least zl3 Yr or zl4 Yv before attempting a summation 
of the remaining correction terms. It follows from equations (44) 
and (42) that the source function at any level tr is

saw = + [yíCM + zPiv + V^w,.], (so)
and that the net flux al this level lv is given by

.G'
Fr(tv) = 2 Ls;(/;)æ2(/;-/1,x-2 Lsp(/') à; (/,-/;)<, (51) 

♦ t,, «’o

where K.¿ is the second exponential integral. The integrations 
over the exponential integrals occurring in equations (46), (47), 
(48), and (51) may be performed by a method of representative 
points and weights developed by Strömgren (17).

We see that to obtain the source function al any depth we 
must know the dependence of the Planck function Br on /r.

+ (7
Since div = -= -dr (52)

X + CT

we may find lv as a function of r, and thus of temperature, by 
integrating equation (52) numerically. With this information we 
can construct tables giving Bv(tv). In the convective zone, 
however, the optical depth, r, is not defined and the following 
device must be used to obtain tv as a function of temperature. 
By definition

= -(x. + ct)^

hence from equation (38) we obtain

dtv zr+CT 4 pr / d log T \
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or
4pr/c/logT\
A; Wlospjad /)//(! og p(J). (53)

Equation (53) may be integrated numerically to give lv as a 
function of log pg and hence of temperature, since in the con­
vective zone we use log pg as the independent variable. Using 
equations (52) and (53) we obtained Bv (U) at a number of 
wavelengths and then computed tables of Sv (ir) according to 
equation (50). From these tables of the monochromatic source 
function the net monochromatic flux at any level is readily 
obtained by evaluating equation (51) by means of Strömgren’s 
tables of representative points and weights (17). I was greatly 
privileged to use these tables before publication. Without these 
tables it would have been impossible to have done this work.

We wish to ascertain if the integrated flux

oc

»()

is constant with depth. In order to perform this integration over 
frequency we divide the continuous spectrum into four regions, 
Â 504, the 1 US limit of He I, to Z 912; z 912 to Â 1458; A 1458 to 
Â 3646; z 3646 to A 8204, the Paschen limit of II. The integrated 
flux in each of these intervals is obtained by finding Fv at five 
points equidistant in frequency and summing with the appro­
priate weights using Cotes’ formula. The selected wavelengths 
and the monochromatic fluxes at the depths r = 0.0, 0.10, 0.60, 
and 1.00 are given in Table 9. The last line of the table gives 
the integrated net flux, F(r), at each level. The emergent flux 
in the region Â 228, the Lyman limit of He II, to Â 504 was cal­
culated for the level r = 0, but it was found to be negligible, 
hence the computations for this region were not carried through 
to obtain Fv at other optical depths. Likewise we neglect the flux 
to the red of the Paschen limit. This flux contributes a very small 
part to the total flux, and its neglect will not afled our deter­
mination of the effective temperature or of the constancy of F 
with depth.

The mean flux is F = 33-29 X 1012 ergs/cm2/sec which cor­
responds to an effective temperature of 36,800°. The deviations
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Table 9.

The monochromatic flux, Fv, in the model atmosphere.

The units of Fv are ergs cm2 sec.

Z T — 04) T = 0-10 t = 0-60 T == 1-00

504.3 r 8.05 X IO'4 9.00 X IO’4 1.40 X IO'3 1.69 X IO'3
567.8 8.42 9.28 1.36 1.72
649.4 8.79 9.64 1.31 1.75
758.7 10.96 11.51 1.31 1.61
911.6 V 15.41 X IO"4 13.17 X IO'4 1.20 X IO'3 1.42X10-3

911.6 r 18.87 X 10'3 18.48 X IO'3 18.48 X 10* 3 19.30 X IO* 3
1006 18.18 18.11 18.69 19.01
1122 16.02 16.19 16.69 17.27
1268 14.06 14.01 14.06 14.41
1458 11.69 X IO"3 11.68 X IO’3 11.79 X IO'3 11.77X10-3

1458 11.69 X IO'3 1 1.68 X IO'3 11.79 X IO’3 11.77 X IO"3
1716 9.55 9.50 9.33 9.62
2083 7.82 7.81 7.67 7.36
2652 5.47 5.37 5.07 4.68
3646 v 3.41 X IO'3 3.32 xlO"3 2.82 X IO’3 2.36 X IO'3

3646 r 4.02 X IO’3 4.02 X IO'3 3.73 X IO'3 3.48X10-3
4234 3.01 X IO"3 2.97 X IO’3 2.70 X IO’3 2.44X10-3
5048 2.20 X 10-3 2.30 X 10-3 1.87 X10-3 1.58x10-3
6251 1.48 X 10"3 1.43 X 10'3 1.11 X IO’3 8.53 X IO'4
8204 v 8.84 X IO’4 8.24 X IO'4 5.22 X IO'4 3.26 X 10"4

F 32.72 X 1012 32.67 x 1012 33.27 X 1012 34.49 X 1012

from the mean are —-1*7,  —1-9, ()•() and +3-6 percent re­
spectively at the levels r = 0-00, 0-10, 0.60 and 1-00. Thus the 
constancy of the net flux with increasing depth is highly satis­
factory in our model. This result vindicates the use of the straight 
mean absorption coefficient recommended by Chandrasekhar 
and the treatment of the1 effects of radiation pressure which we 
have employed here. The criticism by Unsold (18) of the Chan­
drasekhar-mean seems hardly to be justified. Il is true as Unsold 
points out that in the deeper layers where Sv Bv the Rosseland- 
mean and the Chandrasekhar-mean are ccpiivalent and the 
Rosscland-mean may be preferred because of the ease of forming
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Table 10.

Some values of (Sp— Bv)/Bv.

T 2. 504 V 2.759 2.1122 2.1716 2.3646 V 2.4234 28204 V

0.00 0.000 — 0.004 4.98 + 0.362 — 0.159 — 0.175 — 0.155
0.50 .000 .001 1.12 + 0.036 .031 .060 .012
1.00 .000 .000 0.568 — 0.026 .014 .037 .004
1.60 .000 .000 0.289 — 0.032 .005 .021 .001
2.20 .000 .000 0.200 — 0.024 .002 .008 .000
3.00 0.000 — 0.000 0.155 — 0.018 0.000 — 0.002 — 0.000

it. However, in the upper layers of the atmosphere Sv Bv and 
then the use of the Rosseland-mean is subject to criticism. 
Equation [50] enable us to compute Sv— Bv at any layer in the 
atmosphere. A few values of (Sv — Bv)/Bv are given in Table 10 
for interest. We see that over much of the spectrum Sv deviates 
appreciably from Bv at depths r < 0-50. In the transparent 
region, 912 < z < 1500 A, however, the deviation of Sv from Bv 
extends to great depths. Since most of the emergent radiation 
passes in this region it seems advisable in computing the structure 
of the model to use a mean absorption coefficient which allows 
for the difference of Sv from Bv. In order to use a Chandrasekhar- 
type mean the weight functions Fv/F must be evaluated in some 
manner. This procedure involves certain assumptions about the 
process of radiation transfer in the stellar atmosphere. Chan­
drasekhar (9) evaluates F^'/F in a certain systematic way; 
Unsold (18) evaluates these weights in another way. Which way 
is best, and whether cither is better than using the Rosseland- 
mean can only be proven by model atmosphere compulations 
such as carried through here. The present results support the 
use of Chandrasekhar’s weight functions.

That the flux from the model atmosphere increases slightly 
with depth is not very significant. This behaviour may be the 
result of using an adiabatic temperature gradient, which is the 
minimum gradient expected, in the convective zone. Thereby the 
flux in the wavelength region 912 < Â < 1500 A, which comes 
effectively from the convective zone, arises from greater depths 
than it would if the temperature gradient were larger, for a 
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decrease of the temperature gradient decreases the mono­
chromatic opacity of the atmosphere. The small percentage 
reduction of the net flux in the region 912 < z < 1500 A neces­
sary to make the net flux perfectly constant could easily be 
obtained by increasing the temperature gradient in the con­
vective zone slightly. Such an increase would be accordant with 
present concepts of the structure of the convective zone in stellar 
atmospheres.

Referring to equation (6) we find that

(54)

where

different. Since

the last term on the right side of equation 
Furthermore we have put 

= 30,000°, the value corresponding to the boundary tem-

We have neglected
(54) when integrating our model.
Te
peralure To = 25,200°, according to the classical T — r relation, 
equation (12). We have available the information to evaluate 
the term

radiation pres­
it is 1-57 X 104, 

respectively. For his 
Rud k j obi ng

dr

dv
• o

at several values of r, and we find that it does not vary much 
with depth and that its mean value is — 2-37 X 103. Using this 
value and Te — 36,800° we find that the mean value of dpr!dx 
is 1-18 X 103. The value used in our compulations was 1-53 X 103. 
Fortunately these two quantities are not greatly

1 dPr ¿Pr
9r = ~--^ = (*+<?)  _Q dz dz

we may readily compute the acceleration due to 
sure. At the levels r = ()•()(), 0-10, 0-60 and 1-00 
3-38 X 103, 3.99 X 103 and 4.10 x 103 cm/sec2 
model with log peiT = 4.20 and To = 25,200°, 
estimates that gr = 2.35 x 103 cm/sec2. Ilis value is less than ours 
and that is why his model differs from the present model. How­
ever, Rudkjobing’s estimate is somewhat uncertain for he neglects 
some terms. Rudkjobing estimates gr from the alternate expression.

X

\ ?v dv
' o
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He evaluates the integral1 by putting

where Åy and k2 are harmonic mean absorption coefficients 
formed in the manner of the Rosseland-mean, is the integrated 
flux in the region v0 < v < , and F.¿ is the integrated flux in
the region 0 < v < rn. Here v0 is the frequency of the Lyman 
limit of hydrogen. His approximation means that he is writing

’)], v0 < v < o°

0 < v < v0.

and that he is neglecting the terms

It is not clear that these terms may be neglected, for the definition 
of a Rosseland-type mean absorption coefficient sets no con­
dition on the vanishing of such integrals in the gray-body or 
any other approximation. In our case where we have used a 
Chandrasekhar-type mean absorption coefficient, which implies

G©

’ 0

(F^ is the monochromatic flux in the grav-body approximation), 
we have found that 

is fairly large.
Rudkjobing does not give enough data in his paper for us 

to evaluate (55) directly. However, if we use the flux computed 
for our model and the values of Áy, and k2 given by Rudkjobing 
we find that at the level where 0 — 0-170, log pf/ — 3-30, i. e.

1 Note that Rudkjobing’s F is our nF.
D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medil. XXV, 13. 3
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T = 0-60 in the present model, the neglected term is 3-13 X 102 
cm/sec2. Consequently the gr estimated by Rudkjobing should be 
increased to 2-66 X 103. This means that log g for his model is 
4-27. Considering the real difference in the parameter log g be­
tween Rudkjobing’s and the present model, there seems to be 
no serious difference between our model atmospheres. In order

in 1

big. 1. The emergent flux from the atmosphere as a function of A'1.

to compute model atmospheres at still higher temperatures and 
lower surface gravities it would seem preferable to proceed by 
a method, such as that followed here, which takes account of 
the effects of radiation pressure directly, rather than the method 
used by Rudkjobing, for in these atmospheres the effects of 
radiation pressure will be important.

The emergent flux is plotted in figure 1 together with for 
T = 36,800°. We see that in the transparent region of the 
spectrum, 912 < A < 1500 A, the emergent flux is greatly in 
excess of the black-body flux, while in the region beyond the 
Lyman limit the emergent flux is considerably less than that of 
a black-body al the effective temperature of the star. In the 
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visual and photographic regions the emergent flux is less than 
the black-body radiation, but roughly parallels it in intensity 
distribution. The gradients at any wavelengths in this region are 
of little meaning, for gradient is not a sensitive indicator of 
temperature at these high temperatures. The Greenwich gradient, 
2 4100—2 6500, of our model corresponds to T> 150,000°. The 
intensity discontinuities at the Lyman limit, the Balmer limit, 
and at 2 504 for r = 0-00, 0-10, 0-60 and 1-00, are given in 
Table 11. These discontinuities increase a little with depth.

Discontinuities in the continuous spectrum.
Table 11.

T

Lyman Limit Balmer Limit / 504 Limit

Fr 
log --- d mag

Fr 
log —Fv

Zlmag iog^
/ V

A mag

0.00 1.088
in

2.72 0.072
in

0.18 0.270
in

0.68
0.10 1.147 2.87 0.083 0.21 0.704 1.76
0.60 1.187 2.97 0.122 0.30
1.00 1.135 2.84 0.168 0.42

We did not calculate the discontinuities at the 21S, 23S, 2XP 
and 23P limits of He I. However, this does not mean that small 
discontinuities are absent here.

According to the work of Barbier and Chalonge (19), the 
size of the Balmer discontinuity corresponds to spectral type Bl. 
However, as we have indicated in our discussion of the continuous 
absorption coefficient we feel our predicted discontinuities 
are too large, and it is probable that the model is of earlier 
spectral type than Bl. Since the Gaunt factor (13) is 0*88  at 
2 3646 V, we have made xv (H) 12 percent too large at this wave­
length. When xv (H) is reduced by this amount and the emergent 
flux on the violet side of the Balmer limit is recalculated, we 
find that P3646v (0) is 3-49 x 10 3. Consequently we obtain log 
Fr/Fv = 0-061. This corrected value corresponds more nearly to 
spectral type B0 than the value given in Table 11. If we could 
estimate the extra pseudo continuous absorption at 2 3646r due 
to overlap of the broad wings of the higher members of the 
Balmer series, we could compute a more correct value of P3646r(0).

3*
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In any case it is evident that our computed value is a maximum 
value. In comparing our predictions with observation we should 
also note that the observed quantity D, (cf. Barbier and Ciialonge 
[19j), which corresponds to our log Fr/Fv al the Balmer limit, 
cannot be so clearly defined as the theoretical quantity. Because 
of the inherent difficulties in the observation of the quantity I), 
we should expect the observed value of D to be less than the 
predicted log Fr/Fv. It seems probable that our model corresponds 
to about spectral type BO.

The observed number of hydrogen lines is an indication of 
absolute magnitude (20). Since we can compute the electron 
density at any level in our atmosphere from the election pressure 
and the temperature, we may readily find nm, the number of 
hydrogen lines visible, by the Teller-Inglis formula (21). The 
quantity nm does not vary rapidly with electron density. If we 
estimate that the higher members of the Balmer series are formed 
between the levels t = 0-50 and r = 1-00 we find that the Balmer 
series will break off at nm about 15. Reference to the determination 
of nm in a number of early type stars by Miczaika (22) and to the 
spectral types by Morgan, Keenan and Kellman (23) for these 
stars, shows that for spectral types between 0 9 and B2, nm =15 
corresponds about to luminosity class V. There is little doubt 
that our model atmosphere represents a main-sequence star.

5. From the continuous spectrum and the electron density 
of our model atmosphere we have estimated that the model 
corresponds to about spectral type BO V. However, it is desirable 
to confirm this estimate by computing the line spectrum and 
comparing it to observation. A comparison of the relative strengths 
of lines arising from atoms in two stages of ionisation will 
determine the spectral type of the model atmosphere, and a 
comparison of the absolute strengths of the lines will enable us 
to derive the abundances of the elements forming the lines. The 
most prominent lines in the 0 and B type stars are those from 
H, HeI and Hell. These lines are generally used in classifying 
the spectra of the earliest type stars (4, 23). However, these 
lines are strongly affected by Stark effect and the adequate re­
presentation of their line-absorption coefficients in a stellar 
atmosphere is a complex problem. Since it would take a separate 
lengthy investigation to obtain a detailed form for the line- 
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absorption coefficient of the lines of H, He I and He II selected 
by Petrie as the most sensitive indicators of spectral type in 
the 0 stars, these lines will not be studied here, but we will 
attempt to confirm the spectral type of our model by comparing 
the relative strengths of the combined doublet À 4267-19 of C II 
and of Â 4187-05 of C III, and of the pair of lines Â 4819-74 of 
SiIII and Â 4088-86 of Si IV. These lines have been selected either 
because they result from transitions between hydrogen-like levels 
and hence their /'-values may be estimated (cf. below), or be­
cause an evaluation of the dipole moment matrix element neces­
sary to compute the /’-value is available.

The method of computing line profiles is straightforward, 
for the method of obtaining the emergent flux, outlined in the 
previous section, may be used. Since the lines to be studied arise 
from levels of high excitation, we shall consider the lines to be 
formed in absorption. Then the line-absorption coefficient per 
gram of star material is corrected for stimulated emission and 
treated as an addition to If Fc is the emergent flux in the 
continuous spectrum at wavelengths bordering the line, and if 
Fv is the emergent flux at any frequency v in the line, the residual 
intensity in the line is

and the absorption in the line is

(57)

The line absorption coefficient per gram of star material 
corrected for stimulated emission is

(58)

where 2V*  is the number of atoms of the appropriate type per 
gram of star material excited to the lower level of the line, and

c
2 IT
mA
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Here 77? 4 is the mass of the atom, k is Holtzman’s constant, and 
7’o is the frequency of the centre of the line. The function 
gives the shape of the line absorption coefficient broadened by 
collisional and radiation damping for atoms in thermal motion. 
This function has been tabulated by Hjerting (24) for a number 
of values of a and n. Also recently a series expansion for H(a,i>) 
valid for small values of a has been given by Harris (25).

We have

where

H (a, i>) =

and

a 7
4 7T d rn ’

The quantity y is the damping constant for the line. For radiation
lamping

7 = 7 m + 7n (59 a)

where ym is the width of the upper level and yn is the width 
of the lower level. It may be shown (cf. for instance, Unsold 
(12), p. 172) that

(59 b)
7i < m

where is the Einstein probability coefficient for spontaneous 
emission between two levels m and n which have total angular 
momentum quantum numbers Jm and Jn respectively.

The /-value occurring in equation (58) is the absorption 
/-value for the line in question. Its value for a line in a multiplet 
requires some consideration. According to Condon and Siiortley 
(26) the absorption /-valve is given by

8 7l2 77? V S (dj, Cc'j’ )
”3~e2/? 2/Ti (60)
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where a is the chief quantum number of the upper level, a is 
the chief quantum number of the lower level, and j and j are 
the total angular momentum quantum numbers of these levels 
respectively. The quantity S (aj, aj ) is the theoretical strength 
of the line, a quantity which is symmetric in the upper and 
lower levels. For a line designated by

of a multiplet which obeys L-S coupling, explicit forms may be 
found for the theoretical strength (cf. Condon and Shortley 
[26] p. 238). Using these expressions we can write

T > 8 n2m V i .a
I (ßL|p|a7/) | (61)

where W takes the following values depending in the type of 
transition.

The table gives *P (L, S, J, T).

type of 
transition zJL = 1 4L = (1

Q(J)G(J+1) P(J+1)Q(J)

4 (.7+1) (2.7+ 3) 4 (.7 + 1) (2 J+ 3)

.7—> J P(J)Ö(J) IP (J)]2
4.7 (J+1) 4.7 (.7 + 1)

.7—* .7-1
P(J) P(J-l) P(J) Q(J-l)

4.7 (2.7-1) 4 J (2.7-1)

Here
P (J) = (J- S 1)

Q (J) = (S + L — J)(J + S- L+1)

/?(./) = J(J+ 1) L + 1),

and is the largest of the two L-values occurring while J is 
the J-value belonging to that term. To obtain the /-value we need 
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now lo evalúale | («L | P| « L ) |2. For a central field ¡I mav 
be shown (cf. Condon and Siiortley [26], p. 132) that

|(«¿|P|«'¿ —1)|2 = (/CF1)2, (62)

where \RL I is the square of the dipole matrix element of 
the radial part of I he wave function. For central fields onlv 
transitions with zl L = ± 1 are allowed. By combining equations 
(61) and (62) we find

f(aLJ,c<’L—lJ’) = ~:T¿,nv i R,? L ~1V J')
3// ’ 4/?-l (63)

It may be noted that

) — I/Vl-i) •

Consequently we may find the /’-value for all transitions for 
which we know (R* l 1 . If the energy levels concerned are 

hydrogen-like we can put

(64) 

where * (4/)] is the square of lhe radial matrix element 

for hydrogen, tabulated for instance by Betiie (27), and Z is 
the effective charge on the nucleus. Combining equations (61), 
(62) and (64) we find that the /-value for a line occurring be­
tween two hydrogen-like levels is

f(aLJ, a L—\ J') =
Mm H'Z

3h Z1 4/? —1 (65)

Here L is the largest L-value occurring.
In a recent paper (28) Bates and Damgaard consider the 

calculation of the absolute strengths of spectral lines and show 
that lhe quantity [R^l 1j /(4 L2— 1), which they call or2, may 

be evaluated approximately by neglecting the departure of lhe 
potential of an atom or an ion from its asymptotic Coulomb form. 
They show that this approximation is remarkably good for lhe 
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lighter elements, up to Mg, and for simple systems which are 
composed of one electron outside a closed shell, and that it 
yields useful information for complex systems which have 
unclosed shells. For many spectral lines of astrophysical interest 
this evaluation by Bates and Damgaard of /7L1)is superior 
to a hydrogenlike approximation.

It is of interest to find the sum of the /"-values of all com­
ponents of a multiplet arising from a given sub-level, charac­
terised by J , of the lower term. To find this we evaluate

y ¿J') = S(-“J’aJ)

J J

keeping j' fixed. Reference to Condon and Shortley (26) p. 238 
enables us to evaluate the sum on the right side for the various 
types of multiplet that occur. In the case A L = —1

y f(aLJ,a'L-lJ') = \(a L\ P \ a'L - 1) \2 L (2 L+l). (66)

J

In the case AL — 0

'S f(aLJ,a'LJ'') = ^^|(«£|P|«'£)|2L(£ + 1). (67) 

J

and in the case A L = + 1

S f(aL-l J.a'LJ’) = ” I (B Z. -11 PI aL) |2 £ (2 £ - 1 ). (68)

J

Since the lines we shall study belong to the case AL — — 1 (see 
Table 12), we shall continue the discussion using only equation 
(66). Using equation (62) we find that.

\ f Ça LJ, a L — I J’) =

J

(69)

When we compare this expression with the well-known formula 
for the oscillator strength in a one electron system (cf. for instance 
Bethe [27] p. 435),
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fal-a'V =
1 max (Z, /')
3 Tz'"+ 1 (70)

where / is the angular momentum quantum number of the lower 
state and (v/Ry) is the frequency of the line in units of the Ryd­
berg frequency, and when we put / = L — 1, Z = L in equation 
(70), we find that

TftaLJ, cc L (71)

Throughout this paragraph we are implicitly assuming that the 
frequency of all components of the multiplet arising from the 
sub-level J is the same. If this is true then it is apparent that 
the /’-value of any component may be found from the relation

f(aLJ,a'L—\ J') = f(aLJ,a'L-lJ)

T T _L 1 \ >(

(72)

In his paper on tSco, Unsold (29) effectively uses equation 
(72) to estimate the /-values of lines in multiplets. However, 
what he calls “/” is

f(ccLJ, aL'J'Y 2J'+1
(2S+1)(2L'+1)

for he combines with the /‘-value the factor (2 J + l)/(2 S+ 1)- 
(2 h' + 1) by which you must multiply

(73)

to get N*,  the number of atoms excited to the sub-level from 
which the line arises. Here, as usual, grs = (2 S + 1) (2 L + 1), 
and s is the excitation energy of the lower level of the line. 
Since there is no real advantage to working with the pseudo 
/’-values introduced by Unsold, and since this procedure may 
even lead to error if one should take these “/-values” and 
convert them into Einstein spontaneous emission probabilities 
by the relation
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A Ça J’, a J) = f Ça J, aJ ),

in order to compote the radiation damping constant of a line
according to equations (59 a) and (59 b), it is preferable 
compute the true /’-values for the lines of L-S coupling m 

to
As

by equations (63), (65), or (72).
In order to determine the radiation damping constant for the 

lines studied we shall compute the Einstein spontaneous tran­
sition probabilities by the relation

We shall neglect collision damping. Of the lines chosen, only 
Si IV /. 4089 is sufficiently strong that the exact value of the 
damping constant is of consequence. For this line Rudkjøbing (8) 
has shown that collision damping is not important.

The lines studied are given in Table 12 together with the 
relevant spectroscopic information. The necessary matrix elements, 
R2, for obtaining the /’-values and damping constants of the C II, 
C III and Sz III lines were obtained by assuming these spectra 
to be hydrogen-like. The matrix-elements for Sz IV were found 
by the method of Bates and Damgaard (28). It is to be noted 
that according to equations (59) the radiation damping constant 
depends upon the temperature. For the CII, GUI and Si III 
lines y at 32,000° was used throughout the atmosphere, but for

Table 12.
Lines studied.

Spectrum Designation .r] —J f y at 32,000°

C 11................. 3d2D—4/ 2F° 3/ 5/¡2 ¡2 1
5/ __ 5/12 ¡2 4267.19 1.11 1.69 xlO10
5/ ___ 7/12 12 1

C III................ 4iF°_5iG 3—4 4187.05 1.44 2.22x10»
Si III .............. 4/ 3F°—Sg 3G 3—3

3—4
J 4819.74 1.25 3.97x10»

Si IV............... 4 2S—4 2P° 1/ ___ 3/¡2 ¡2 4088.86 0.751 4.02x10»
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the Sz IV line y was calculated at each depth in the atmosphere. 
In evaluating the damping constant account was taken of all 
possible transitions to the levels listed by Bacher and Goudsmit 
(30).

The line absorption coefficient per gram of star material 
corrected for stimulated emission was derived at each level in 
the atmosphere according to equation (58). The ionisation and 
excitation equilibria were computed at each level, and account 
was taken of the temperature dependence of the various partition 
functions involved. The function H {a, v) was evaluated by the 
series expansion given by Harris (25). The monochromatic con­
tinuous absorption coefficient corrected for stimulated emission 
was also obtained at each level for the central frequency of each 
line, and then the relative absorption al several points in the 
line profile was computed by the method outlined above. The 
results obtained are given in Table 13. These points were plotted 
and the profile was integrated graphically to give the equivalent 
widths listed in Table 14. The relative amounts of C and Si 
to II used, are those found by Unsold (29) for rSco, that is 
iV(H)/A'(C) = 5-8 X103 and N(H)¡N(Si) = 1-fixlO4.

Computed absorption line profiles*

* The table gives absorption in the line in terms of the continuous spectrum at the 
wavelength in question.

Table 13.

Z1Â C Z/z 4267-19 C III/. 4187-05 Si IIIÅ 4819-74 A). Si IX). 4088-86

0.00 A 0.35 0.30 0.27 0.00 A 0.41
.07 .31 .26 .18 .10 .37
.14 .17 .14 .02 .20 .14

0.21 0.04 0.03 0.0O .40 .05
0.80 0.03

The C II “line”, Â 4267-19, is a blended multiplet of three 
components. The two components arising from the sub-level with 
j = 5/2 have the same wavelength, hence we form a summed 
/’-value for them as in equation (69). This summed /’-value is 
the same as that for the one component arising from the level 
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with j — 3/2. We next assume that all components have the mean 
wavelength 4267-19A, and find the desired line absorption coef­
ficient by adding the contributions from each component. Since 
each component has the same damping constant, it follows that 
lv for the combined multiplet is given by formula (58) with /’ 
equal to the summed /’-value for all components arising from 
either sub-level j = 3/2 or sub-level j = 5/2, and that TV*  is the 
number of excited atoms given directly by the Boltzman equation 
(eq. [73]).

The C III and Sz IV lines are single, consequently the pro­
cedure of forming lv is straightforward. The Si III line is com­
posed of two components which arise from the sub-level j = 3 
of the lower term. Since these two components have the same 
wavelength we use a summed /’-value, equation (69), and we 
note that in this case N*  is not given by Boltzman’s equation 
directly; but by Nr>s X (2 J + 1)/(2S + 1) (2 L + 1).

The strength of the lines in the model atmosphere may be 
compared with measurements made on high dispersion plates of 
the strengths of the same lines in rSco, a BO V star, by Unsold 
(29), and in 10 Lac, an 0 9 V star, by Aller (31).

The observed equivalent widths are given in Table 14 
together with the computed equivalent widths. The observed 
and computed relative intensities C II /C III and Sz III ¡Si IV are 
given in Table 15.

* in equivalent angstroms.

Table 14.

Equivalent widths*.

Line Computed T Seo BO V
(Unsold)

10 Lac 09 V
(Aller)

C II 7. 4267 . . . 0.099 0.115 0.081
C III Â 4187 . 0.085 0.065 0.089
Si III 2.4820. 0.050 0.071 ( <0.050)
Si IV 7. 4089 . 0.209 0.174 0.270

Since Aller does not measure the line Â 4820 in 10 Lac, 
I estimate that its equivalent width is less than 0-050 E.A. It is 
not certain that the measurements by Unsold and by Aller are 
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on the same scale, for the plates used, although of comparable 
dispersion, are not taken by the same telescope and spectrograph. 
This fact should not seriously affect the interpretation of the 
observed and computed relative intensities (3II/C III and Si 111/ 
Si IV, but it will prevent a precise determination of the abundance 
of carbon and silicon by matching the computed equivalent 
widths closely to the observed equivalent widths.

Table 15.

Relative intensities.

Ratio Computed T Seo HO V
(Unsold)

10 Lac O 9 V 
(Aller)

C IljC Ill .. . 1.17 1.77 0.91
Si 111{Si IV . 0.24 0.41 (<0.18)

From the data of Table 15 we conclude that the spectral type 
of the model atmosphere is definitely earlier than 130 V and 
somewhat later than 0 9 V, say 0 9-5 V on the scale of Morgan, 
Keenan and Kellman (23). R. M. Petrie (4) classifies 10 Lac 
as an 0 8-5 star. On his scale the model atmosphere might just 
be an 0 9 star. The effective temperature of 36,800° which we 
have found for the model atmosphere is considerably higher 
than the excitation temperature of 30,700° found by Petrie for 
0 9 stars from a study of the relative intensities of the Hell and 
He I lines Â 4542 and Â 4471 respectively, and is also higher 
than the temperature based on the ionisation scale given by 
Kuiper (5).

The difference between effective temperature and excitation 
temperature found here for the 0 9 stars is in the same direction 
as that found for later type stars from curve of growth studies. 
This result occurs because of the rather great transparency of 
stellar atmospheres to radiation in the range 912 < z < 1500 A, 
which lends to increase the integrated emergent flux above that 
expected for the temperatures indicated by the opacity in the 
wavelength regions corresponding to the excitation of the com­
monly studied lines.

The dependence of the monochromatic optical depth, lv, on
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Table lß.
The monochromatic optical depths, tv, al various wavelengths.

T 2 314 ' 2 649 2 912v 2 1006 2 1458 2 3646v 2 4234 | 2 6251

0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000
0.10 0.77 0.12 0.32 .013 .014 0.039 0.022 0.040
0.20 1.45 0.24 0.64 .023 .026 0.080 0.044 0.082
0.40 2.56 0.49 1.30 .041 .049 0.17 0.092 0.18
0.60 3.43 0.72 1.93 .059 .074 0.28 0.15 0.30
0.80 4.14 0.96 2.55 .078 .100 0.40 0.21 0.44
1.00 4.71 1.18 3.14 .097 .13 0.53 0.28 0.60
1.40 5.58 1.62 4.31 .139 .19 0.83 0.45 0.98
1.80 6.11 2.06 5.46 .186 .27 1.18 0.67 1.44
2.20 6.66 2.50 6.60 .236 .35 1.59 0.92 1.97
2.60 7.00 2.93 7.73 .289 .44 2.03 1.19 2.55
3.00 7.26 3.35 8.84 0.345 0.53 2.50 1.48 2.97

wavelength in the present model atmosphere is illustrated by the 
data of Table 16. The emergent monochromatic flux may be 
roughly evaluated by taking Bv at the depth lv — 0-60. It is 
obvious from the data of Table 16 that the “temperature” of the 
emergent flux varies considerably with wavelength. In a line, the 
monochromatic optical depth varies rapidly with wavelength, as 
is illustrated by the data of Table 17, and it is a question what

Table 17.
tv in 2 4267, AT (H)/AT (C) = 5-8 X 103.

T /1Z = 0-00 A zt z 0-07 A zt/. = 0-14 A Zlz == 0-21 A

0.00 0.00 0.00 0.000 0.000
0.10 0.55 0.32 0.080 0.031
0.20 1.14 0.66 0.166 0.064
0.40 2.20 1.29 0.34 0.131
0.60 3.10 1.84 0.51 0.20
0.80 3.80 2.31 0.64 0.28
1.00 4.36 2.70 0.81 0.37
1.40 5.13 3.25 1.08 0.56
1.80 5.68 3.68 1.35 0.79
2.20 4.08 1.65 1.05
2.60 4.46 1.96 1.33
3.00 4.82 2.28 1.64
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optical depth, or temperature, should be taken as “characteristic” 
of the whole line, for the level at which tv = 0-60 occurs differs 
greatly, depending on the distance from the line centre. The data 
of Table 17 illustrate nicely that the core of a line is formed 
in the outermost layers of the atmosphere, while the wings are 
formed at progressively deeper layers. In any case it is evident 
that whatever temperature is chosen in order that the actual 
process of line formation may be represented by line formation 
in a layer of gas at one temperature and pressure, this temperature 
will be less than the corresponding temperature for the continuous 
spectrum in the neighbourhood of the line, and that both of these 
temperatures will be less than the effective temperature, for the 
effective temperature is largely determined by the magnitude of 
the emergent flux in the region 912 < 2 < 1500A, and in this 
region the “characteristic temperature” is high. Excitation or 
ionisation temperatures are effectively “characteristic temper­
atures” for the lines involved and hence bear a complicated 
relationship to the effective temperature of the atmosphere, which 
is defined by the integrated emergent flux.

The high effective temperature we have found for the O9-5V 
stars, which is in accord with the estimate of Rudkjøbing (8) 
from his study of model atmospheres, means that the B stars 
are spread over a large range of effective temperature, for the 
effective temperature of AO V stars seems to be close to 10,000° 
(32). The greatest spread in effective temperature probably 
occurs amongst the early B-type stars, for at the temperatures 
estimated to be characteristic of these atmospheres the peak of 
(he black-bodv energy distribution curve moves into the range 
912 < Â < 1500 A. When this happens an excess of emergent 
radiation in this critical wavelength range will build up rapidly, 
and force up the effective temperature. It is difficult to estimate 
how high the effective temperatures of the absorption-line 0 5 or 
0 6 stars may be. Consideration of the stability of atmospheres 
under the effects of radiation pressure (10), indicates that only 
stars of large surface gravity will have stable atmospheres at very 
high effective temperatures.

From Table 14 we see that the absolute strengths of the lines 
in the model atmosphere are intermediate between those observed 
in rSco, BO V, and in 10 Lac, 0 9 V. This result is in accord 
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with the spectral type of the model atmosphere being 0 9-5 V, 
and confirms the assumption that the relative abundances of C 
and Sz to H used are representative of the chemical composition 
of early-type atmospheres. The actual abundances occurring 
cannot be far from the chosen abundances, for if the carbon 
abundance is reduced by a factor 0-4, the absolute strengths of 
the C II and C III lines are reduced to 0-069 E. A. and 0-061 E. A. 
respectively. These values are significantly lower than the ob­
served line strengths. The ratio C IlfC III is nearly unchanged 
by this change in the carbon abundance, for it becomes 1-13 
instead of 1.17. Since hydrogen is the dominant source of opacity 
in the wavelength range of the lines studied, departure of the 
real abundance of He from the assumed abundance of He will 
not affect the computed line strengths and the relative abundances 
of C and Sz deduced therefrom by altering the contrast appreciably.

6. The limb-darkening of early type stars is difficult to 
establish from observations of eclipsing variables in which one 
or both components are 0 or ß-type stars, and usually the ob­
servations are worked through with estimated values of the coef­
ficient of limb-darkening. Since in the course of the computations 
for the net flux in the atmosphere we have obtained the mono­
chromatic source function Sp as a function of the optical depth, 
we can compute the emergent intensity as a function of the 
angle of emergence and can thus find the limb-darkening of the 
model atmosphere in various wavelengths. We have

00

/„((»,/<) = /<“’ (76)
’ 0

where Ir (0, /z) is the monochromatic intensity emerging al the 
angle cos-1/z to the normal. Here tv is the monochromatic optical 
depth. The limb-darkening is expressed by

(0, fi)/Iv (0, 1) = 1 — zz + zz/z, (76)

where zz is the coefficient of limb-darkening.
The values of Iv (0, /¿)/Iv (0, 1) given in Table 18 were found 

by integrating equation (75) numerically for values of /z equal 
to 1-00, 0-50, 0-20 and 0 05. At the limb, ft — 0-00, Ir (0,/z) 
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The limb-darkening, (0,//)//r (0, 1), of lhe model atmosphere.
Table 18.

p Z 6251 Z 4234 Z 1006 pure scattering

1.00 1.000 1.000 1.000 1.000
0.50 0.892 0.845 0.663 0.688
0.20 0.777 0.726 0.438 0.490
0.05 0.688 0.574 0.373 0.380
0.00 0.561 0.476 0.338 0.331

was put equal to Sp (0-0). Also given in Table 18 is lhe limb­
darkening computed by Chandrasekhar (33) for an atmosphere 
scattering according to lhe Rayleigh phase function, i. e. for 
electron scattering. The intensity Iv (0,1) equals 1-57 X10-', 
3-17 X IO-3 and 24-69 X IO-3 ergs/cm2/sec respectively al z 6251, 
z 4234 and z 1006. The wavelength A 6251 corresponds roughly 
to lhe effective wavelength of visual-red observations, while the 
wavelength z 4234 corresponds to the effective wavelength of 
photographic observations. Al both these wavelengths hydrogen 
is the predominant source of opacity in the atmosphere. The 
limb-darkening was calculated at Â 1006 also, because here 
electron scattering is the predominant source of opacity, and the

03 _________ I_______ i_______ 1_______ I_______ I_______ I_______ I_______ I_______ L
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.6 0.9

Fig. 2. The limb-darkening of the model atmosphere.
1.0
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limb-darkening at 7. 1006 will be characteristic of electron 
scattering atmospheres.

The data of Table 18 are plotted in Figure 2 as a function 
of //. The limb-darkening at A 1006 is closely that obtained by 
Chandrasekhar through exact compulations of the limb-darken­
ing expected in an atmosphere scattering according to Ray­
leigh’s phase function. In the present computations the scattering 
was assumed to be isotropic. At A 4234 the electron scattering 
contributes a larger amount to the total opacity than at A 6251 
and the limb-darkening curve is accordingly closer to the limiting 
curve for pure scattering.

An expression of the form of equation (76) was fitted to the 
plotted points by the method of least squares, yielding the fol­
lowing coefficients of limb-darkening: u = 0-35 at A 6251, 0.44 
al A 4234, 0-65 for pure scattering, and 0-67 at A 1006. From his 
study of the light curve of AO Cassiopeiae, Frank Bradshaw 
Wood (34) concludes that the appropriate coefficient of limb­
darkening for 0 stars is about 0-6. Since AO Cassiopeiae is a 
pair of 0 8 supergiants we may expect electron scattering to be 
predominant even in the photographic and visual spectral regions. 
The value of the limb-darkening suggested by Wood is consistent 
with the results of the present compulations which show that the 
limiting value of u = 0-65 is approached when the opacity is 
predominantly due to electron scattering.

This investigation was made during the author’s tenure of 
a National Research Fellowship (U. S. A.). The author is most 
grateful to Professor Bengt Strömgren for many helpful discus­
sions during her stay at the Copenhagen University Observatory 
and for the friendly welcome she received there.
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